• مشکی
  • سفید
  • سبز
  • آبی
  • قرمز
  • نارنجی
  • بنفش
  • طلایی
تعداد مطالب : 351
تعداد نظرات : 75
زمان آخرین مطلب : 6115روز قبل
کامپیوتر و اینترنت
آموزش زبان C بخش اول
مقدمات زبان C

زبان C در سال 1970 توسط دنيس ريچي طراحي گرديد. اين زبان تكامل يافته زبان BCPL
ميباشد كه طراح آن مارتين ريچاردز است ،و زبان BCPL از زبان B كه طراح آن
كن تامپسون مي باشد ، نتيجه شده است .
زبان C معمولا" يك زبان مياني ناميده مي شود . اين بدان معني نيست كه آموزش
اين زبان مشكل است ، يا قدرت آن از زبان هاي برنامه سازي مثل پاسكال و بيسيك
كمتر است و يا اين كه مشكلاتي مشابه زبان اسمبلي براي برنامه نويس ايجاد مي كند.
علت مياني بودن زبان C اين است كه عناصر زبان هاي سطح بالا را با خصيصه تابعي
زبان اسمبلي درهم آميخته است .براي پي بردن به جايگاه زبان C درمقايسه با ساير
زبان هاي برنامه سازي به جدول (1) مراجعه نماييد .
جدول (1) . سطوح زبان هاي برنامه سازي

زبان C همانند ساير زبانهاي مياني با مفاهيم بيت ، بايت و آدرس كه از عناصر
ابتدايي ماشين هستند سر و كار دارد . يعني در اين زبان مي توان محتويات بيت ها
و بايت ها را تيز تغيير داد .
برنامه هاي نوشته شده به زبان C براحتي از ماشيني به ماشين ديگر قابل انتقال
مي باشند . مثلا" برنامه نوشته شده براي كامپيوتر APPL در كامپيوترهاي IBM قابل
اجرا است . اين خصيصه را قابل حمل بودن (Portability) زبان مي گويند .
كليه زبان هاي برنامه سازي سطح بالا و مياني داراي نوعهاي داده (data types)
هستند . هر نوع داده ، مجموعه اي از مقادير را مشخص مي كند كه اعمال خاصي روي
آنها قابل انجام است . نوع داده اي كه در اكثر زبانها وجود دارد عبارتند از :
اعداد صحيح ، كاراكتري و اعداد اعشاري . C داراي 5 نوع داده اصلي است كه در آن
تقريبا" تبديل هر نوع داده به نوع ديگر امكان پذير است . مثلا" در يك عبارت
مي توان نوع كاراكتري را با نوع عددي صحيح و يا اعشاري تركيب كرد .
زبان C خطاي زمان اجرا مثل boundray checking را چك نمي كند . منظور از boundray checking
اين است كه در آرايه ها تجاوز از حدود مشخص شده ، به راحتي
امكان پذير بوده و از نظر كامپايلر با خطايي مواجه نميشود. اين مساله برميگردد
به اين كه در زبان C آرايه يك اشاره گر (pointer) است . در اين راستا ، نوع
پارامترها و آرگومان هاي توابع نيز در گونه هاي قديمي C با يكديگر مطابقت نشده و
از نظر كامپايلر با خطا مواجه نمي شد ولي در گونه هاي جديد C با معرفي الگوي
تابع (Function prototype) اين مشكل رفع شده است . C
همانند زبان هاي ALGOL، PASCAL، و... يك زبان ساخت يافته است . يك زبان
برنامه سازي ساخت يافته امكانات زيادي ، از جمله استفاده از چند ساختار حلقه سازي
مثل while، do-while،و forو را فراهم مي كند . در اين گونه زبان ها از goto به
ندرت استفاده مي شود و نوشتن دستورات برنامه در هر ستوني از خط و در هر جاي
فايل امكان پذير بوده ، مثل زبان فرترن مقيد به ستون هاي خاصي نيستند. استفاده
از زيربرنامه ها و بلاك ها نيز از خصيصه هاي اين نوع زبان ها هستند . ذكر اسامي
چند زبان ساخت يافته و غير ساخت يافته ، در انتخاب زبان برنامه سازي جهت برنامه
نويسي مفيد است . ( جدول (2) ) .
جدول (2) . بعضي از زبانهاي ساخت يافته و غيرساخت يافته

هر برنامه در زبان C داراي خصيصه هايي است كه بعضي از آنها عبارتند از : 1
در زبان C هر دستور برنامه به يك ; ختم مي شود . 2
هر دستور ميتواند درچند خط ادامه داشته و يك خط ممكن است شامل چند دستور
باشد . 3
حداكثر طول يك خط برنامه 254 كاراكتر است . 4
در زبان C برنامه نويس مي تواند در هر نقطه از برنامه ، بااستفاده از علائم {
و }و يك بلاك را مشخص كرده و هر متغيري را كه مي خواهد در آنجا تعريف نمايد .
اين متغيرها فقط در آن بلاك معني خواهند داشت . توجه داريم كه هر بلاك مجموعه اي
از دستورات وابسته به يكديگر خواهد بود :
ؤؤ { |

بلاك | ; مجموعه دستورات } |

ؤؤ 5
براي داشتن توضيحات در برنامه كافي است آنها را دربين /*و *و/ قرار داد: *

توضيحات /* C
يك زبان ساخت يافته بلاكي نيست . اين بدان معني است كه تعريف يك زيربرنامه
( در اينجا تابع ) در زيربرنامه ديگر ( همانند پاسكال ) امكان پذير نيست و اين
امر از مساله coupling مي كاهد . C
زبان برنامه نويسي سيستم است . منظور از برنامه هاي سيستم عبارتند از : 1
سيستم عامل (Operating system) 2
مفسر (Interpreter) 3
ويراستار (Editor) 4
اسمبلر (Assrmbler) 5
كامپايلر (Compiler) 6
مديريت بانكهاي اطلاعاتي (Database management)
امروزه C در اكثر امور برنامه نويسي مورد استفاده قرار مي گيرد . زيرا اين
زبان هم داراي خصيصه " قابل حمل بودن " است و هم داراي كارآيي خوبي مي باشد و
سرعت زياد C بر محبوبيت آن افزوده است . مساله قابل حمل بودن ، يك مساله بسيار
مهم است زيرا هم موجب صرفه جويي در وقت شده و هم باعث صرفه جويي در هزينه ها
مي گردد .
زبان C فقط داراي 32 كلمه كليدي است ( جدول (3) ) كه 27 كلمه كليدي آن توسط
ريچي ( طراح زبان ) معرفي شده و 5 كلمه كليدي ديگر توسط موسسه استاندارد سازي
زبان به آن اضافه شده است . اين تعداد در مقايسه با 159 كلمه كليدي كه در زبان
بيسيك وجود دارد قابل توجه است .

خداییش اگر خوشت اومد نظر بده
دوشنبه 19/6/1386 - 21:46
کامپیوتر و اینترنت

آموزش سخت افزار (قسمت شانزدهم)


نمايشگر(۲)Monitor

عمق رنگ (Color Depth)
رنگ هايي كه يك مانيتور نشان مي دهد از تركيب حالات كارت گرافيكي و قابليت رنگ در مانيتور، بدست مي آيد، مثلا كارت SVGA، قادر به نمايش ۱۶۷۷۷۲۱۶ رنگ مي باشد و اين كارت مي تواند اعداد ۲۴ بيتي تشريح كننده يك پيكسل را پردازش نمايد. تعداد بيت هاي استفاده شده براي تشريح يك پيكسل عمق بيت نام دارد. عمق بيت را True color نيز مي گويند. در ۲۴ بيت جهت تشريح هر پيكسل براي هر يك از رنگ هاي اصلي (قرمز - سبز - آبي) از ۸ بيت استفاده مي شود.
در چنين مواردي امكان توليد ۱۰ ميليون رنگ وجود دارد. يك كارت ۱۶ بيتي قادر به توليد ۶۵۵۳۶ رنگ مي باشد. در حال حاضر از ۳۲ بيت جهت تشريح يك پيكسل استفاده مي شود، كه اين مدل در دوربين هاي ديجيتال، انيميشن و بازي هاي ويدئويي به كار مي رود.
مصرف انرژي
تكنولوژي مورد استفاده در مانيتورها ميزان مصرف انرژي آن ها را تعيين مي كند. نمايشگرهاي CRT از ۱۱۰ وات استفاده مي نمايند، اما مانيتورهايي با تكنولوژي LCD از ۳۰ تا ۴۰ وات انرژي استفاده مي نمايند. نمايشگرهاي هوشمند داراي ۴ مرحله كاري هستند كه مصرف برق را در آن ها بتدريج كم مي كنند.
۱- حالت روشن و عملياتي: در اين مرحله چه نمايشگر در حال كار باشد و چه برنامه محافظ صفحه نمايش در حال اجرا، بيشترين برق مصرف مي شود.
۲- مرحله آماده باش(standby ):اين مرحله تنها ۵۰ درصد برق كمتر مصرف مي كند و به سرعت به ورودي ها پاسخ مي دهد.
۳- مرحله خواب يا تعليق (suspend): در اين حالت لامپ تصوير در عمل خاموش است و نمايشگر ۱۰ تا ۱۵ وات برق مصرف مي كند و اگر كليدي را فشار دهيد نمايشگر به آهستگي روشن مي شود.
۴- مرحله خاموشي: آخرين حالت مرحله خاموشي است كه در اين مرحله عمل خاموشي به طور فيزيكي بوسيله كاربر با كليدهاي خاموش و روشن صورت نگرفته است، بلكه مدارهاي داخلي هنوز فعال هستند و نمايشگر ۳ تا ۷ وات برق مصرف مي نمايد.
جهت فعال كردن امكان صرفه جويي در مصرف برق در نمايشگرها، در ويندوز مراحل زير را انجام دهيد: از control Panel، ِِِDisplay را انتخاب نماييد، سپس وارد Display Properties شويد و Screen Server را انتخاب كنيد. در اين برگه در Energy ، Setting را انتخاب نماييد. براي انتخاب الگوي انرژي، Power schemes و براي رايانه شخصي Home/Office desk و جهت رايانه هاي كيفي و كتابي Portable/laptop را برگزينيد.
در گزينه Turn off Monitor زماني را كه بعد از آن نمايشگر بايد به حالت كم مصرفي برسد انتخاب نماييد. اگر Never را انتخاب كنيد خصوصيات صرفه جويي در انرژي غيرفعال خواهد شد. در جلوي گزينه System Standby مي توانيد زمان بي كاري رايانه را تعريف كنيد تا پس از آن سيستم به حالت آماده به كار در آيد. در قسمت Turn off Hard disks نيز مي توانيد ديسك سخت را در مواقع بي كاري غيرفعال نماييد.

خطرات كار با نمايشگرها
بسياري از كارخانه هاي سازنده نمايشگر، ميزان خطرات زيان آور نمايشگر را جهت رقابت با ساير كارخانه ها كاهش مي دهند. اين خطرات شامل:
- پرتوهاي اشعه ايكس
- پرتوهاي اشعه ماورابنفش
- ميدان هاي الكتريكي با ولتاژ بالا
- ميدان هاي الكترومغناطيسي
- امواج الكترومغناطيسي فركانس پايين و بالا
گفته مي شود انواع ناهنجاري هاي كرموزومي و بيماري هاي ژنتيكي، سرطان ها، اختلال در ديد چشم، ضايعات عصبي و رواني، سقط جنين و... از عوارض اين پرتوها هستند.
لازم است براي مقابله با اين خطرات روش هاي زير را به كار بريد:
- از عينك ها يا فيلترهاي مرغوب استفاده نماييد.
- نمايشگر را تحت زاويه ۲۰ درجه از بالا يا پايين با چشم قرار دهيد.
- فاصله نمايشگر تا چشم را ۴۰ تا ۷۰ سانتي متر تنظيم نماييد.
- در محل استفاده از رايانه از لامپ هاي قوي استفاده نكنيد و تا آن جا كه ممكن است نورهاي طبيعي را به كار بريد.
- درخشندگي صفحه نمايش را كاهش دهيد، لامپ هايي را كه به صورت مستقيم به صفحه نمايش مي تابند خاموش كنيد، نمايشگر را رو به پنجره نگذاريد.
- مدت زمان طولاني در مقابل نمايشگر روشن ننشينيد.
بدنه رايانه ها و نمايشگرها بوي مخصوصي از خود متصاعد مي كنند كه اين بو ناشي از گازهاي «يوكسين» و «فوران» مي باشد كه به عنوان مواد ضد حريق در بدنه نمايشگرها و كارت ها به كار مي روند، كه هر دو سرطان زا هستند. اين گازها هنگام آتش سوزي پراكنده مي شوند اما در دماي معمولي نيز متصاعد مي گردند، بنابراين بهتر است به طور منظم و در فواصل مشخص هواي محيط را تغيير دهيد.
حداكثر وضوح و دقت تصوير
دقت (Resolution) به تعداد پيكسل هاي نمايشگر اطلاق مي گردد. دقت تصوير توسط تعداد پيكسل ها در سطر و ستون مشخص مي گردد. مثلاً يك نمايشگر با دارا بودن ۱۲۸۰ سطر و ۱۰۲۴ قادر به نمايش ۱۰۲۴*۱۲۸۰ پيكسل خواهد بود. كارت فوق دقت تصوير در سطوح پايين تر يعني ۷۶۸*۱۰۲۴، ۶۰۰*۸۰۰ و ۴۸۰*۶۴۰ را نيز حمايت خواهد نمود.
Refresh Rate (نرخ بازخواني/ بازنويسي)
در مانيتورها با تكنولوژي CRT نرخ بازخواني / بازنويسي نشان دهنده تعداد دفعات نمايش تصوير در يك ثانيه است، در صورتي كه مانيتور CRT داراي نرخ بازخواني / بازنويسي ۷۲ هرتز مي باشد در هر ثانيه ۷۲ مرتبه تمام پيكسل ها از بالا به پايين بازخواني / بازنويسي مجدد خواهد شد. اين نرخ بسيار حائز اهميت است و هر اندازه كه بيشتر باشد تصوير مناسب تر خواهد بود، (تصويري عاري از هرگونه لرزش.)
در صورتي كه نرخ فوق بسيار پايين باشد باعث لرزش نوشته هاي موجود در صفحه نمايش شده و بيماري هاي مختلف چشم و سردردهاي متوالي را در پي خواهد داشت.

اگه خوشتون اومد نظر بدید

دوشنبه 19/6/1386 - 1:28
کامپیوتر و اینترنت

آموزش سخت افزار (قسمت پانزدهم)


Monitor نمايشگر(۱)

صفحات نمايشگر كه مانيتور ناميده مي شود، متداول ترين دستگاه خروجي در رايانه هاي شخصي محسوب مي گردد. صفحه نمايشگر از تعداد زيادي نقاط كوچك به نام پيكسل تشكيل شده است. هرچه تعداد اين نقاط بيشتر باشد تصوير از تفكيك پذيري (وضوح) بيشتر و در نتيجه كيفيت بالاتري برخوردار است. به طور معمول قدرت تفكيك پذيري و تعداد رنگ هاي نمايشگر به خود نمايشگر و كارت گرافيكي دستگاه بستگي دارد.
تكنولوژي نمايش
در سال ۱۹۷۰ اولين نمايشگرها بر روي رايانه هاي شخصي عرضه گرديدند. اين نمايشگرها تنها متن را نمايش مي دادند. سپس در سال ۱۹۸۱ مانيتورهاي CGA (Color Graphic (Adape توسط شركت IBM كه قادر به نمايش چهار رنگ و وضوح تصوير ۳۲۰ پيكسل افقي و ۲۰۰ پيكسل عمودي بودند عرضه گرديد. در سال ۱۹۸۴ مانيتورهاي EGA(Enhanced Graphic Adape ) توسط شركت IBM معرفي گرديد. اين مانيتورها قادر به نمايش ۱۶ رنگ و وضوح تصوير ۳۵۰*۶۴۰ بودند. شركت IBM در سال ۱۹۸۷ سيستم VGA(Video Graphic Array) را معرفي نمود، اين مانيتورها قادر به نمايش ۲۵۶ رنگ و وضوح تصوير ۸۰۰*۶۰۰ بودند. سپس توسط همين شركت در سال ۱۹۹۰ سيستم (Extended Graphics Array) XGAعرضه گرديد. اين سيستم با وضوح تصوير ۸۰۰*۶۰۰ قادر به ارائه ۸/۱۶ ميليون رنگ با وضوح تصوير ۷۶۸*۱۰۲۴ مي باشد، كه در اين صورت ۶۵۵۳۶ رنگ را نشان مي دهد. نمايشگرهاي امروزي استانداردUXGA (Ultra Extended Graphics Array ) را حمايت مي نمايند، اين استاندارد قادر به ارائه ۸/۱۶ ميليون رنگ با وضوح تصوير ۱۲۰۰*۱۶۰۰ پيكسل است.

نحوه كار صفحه نمايش
در مانيتورهاي تك رنگ يك تفنگ الكترونيكي وجود دارد كه الكترونها را با سرعت به پشت صفحه نمايش پرتاب مي كند. سطح داخلي صفحه نمايش به يك ماده فسفري آغشته است كه در اثر برخورد الكترونها به يك نقطه از اين سطح فسفري ،نور منعكس مي شود. شعاع الكتروني ايجاد شده، نقطه هاي صفحه نمايش را از چپ به راست و از بالا به پايين جاروب مي كند. مدار كنترل كننده صفحه نمايش بسته به متن يا تصويري كه قرار است نمايش داده شود، در زمان مناسب شعاع الكتروني را روشن و خاموش مي كند. اگرچه در هر لحظه شعاع الكتروني تنها به يك نقطه مي تابد اما سرعت جاروب كردن شعاع الكترونيكي به قدري زياد است كه همه نقطه هاي تصوير به طور همزمان روشن به نظر مي رسد.
در نمايشگرهاي رنگي سه تفنگ الكترونيكي با رنگ هاي قرمز، سبز و آبي وجود دارد. هر يك از نقطه ها در سطح داخلي صفحه نمايش از قطعه فسفري قرمز، سبز و آبي تشكيل مي شود. تفنگ هاي الكترونيكي نمايشگر فقط قطعه متناظر با خود را مورد هدف قرار مي دهند. در اثر برخورد شعاع الكترونيكي ،يك قطعه نوري ،همان رنگ از آن منتشر مي شود. مدار كنترل كننده صفحه نمايش بسته به رنگ نقطه ها در زمان هاي مناسب شعاع الكترونيكي هر يك از تفنگ ها را روشن يا خاموش مي كند. در اثر تركيب رنگ ها شعاع هاي نواري منعكس شده از هر نقطه، آن نقطه را به يك رنگ خاص درمي آورد، در نتيجه با تركيب حالت هاي مختلف خاموش و روشن كردن اين سه شعاع الكترونيكي و تنظيم شدت روشنايي رنگ هاي بيشتري توليد مي شود.
نكته: اغلب صفحه هاي نمايشگر از Cathodory Tube) CRT ) استفاده مي نمايند. در صورتي كه رايانه هاي Laptop و ساير دستگاه هاي محاسباتي قابل حمل ازLCD (Liquid Crتystal Display )و يا LDD((Light-emiting diode استفاده مي نمايند.
استفاده از مانيتورهاي LCD با توجه به مزاياي عمده آنان خصوصاً مصرف انرژي پايين، آنها را به تدريج جايگزين مانيتورهاي CRT گرداند.

مواردي كه در تهيه يك مانيتور مي بايست مورد توجه قرار داد:

- تكنولوژي نمايش (CRT، LCD وموارد ديگر)
- تكنولوژي كابل (VGA، DVI وموارد ديگر)
- محدوده قابل مشاهده (قطر صفحه نمايش)
- حداكثر ميزان وضوح تصوير (Resolution)
- ميزان برق مصرفي
Dot Pitch-
Refresh rate -
Color depth-

تكنولوژي كابل
يك آداپتر UXGA اطلاعات ديجيتالي ارسال شده توسط يك برنامه را اخذ مي كند و پس از ذخيره سازي آنها در حافظه ويدئويي مربوط با استفاده از يك تبديل كننده ديجيتال به آنالوگ آنها را به منظور نمايش، تبديل به سيگنال هاي آنالوگ خواهد نمود. پس از ايجاد سيگنال هاي آنالوگ اطلاعات مربوط از طريق يك كابل VGA براي مانيتور ارسال خواهد شد. يك كانكتور VGA از سه خط مجزا براي سيگنال هاي قرمز، سبز و آبي و از دو خط ديگر براي ارسال سيگنال هاي افقي و عمودي استفاده مي كند.
در تكنولوژي جديد DVI(Digital (Video Interface ضرورتي به تبديل آنالوگ به ديجيتال و بالعكس نبوده و سيگنال هاي ديجيتال مستقيماً براي مانيتور ارسال خواهند شد. باتوجه به اينكه اين تكنولوژي از كارت گرافيكي خاص خود حمايت مي نمايد.

محدوده قابل نمايش
اندازه يك مانيتور با دو پارامتر مشخص مي شود: اندازه صفحه و ضريب نسبت. بيشتر نمايشگرهاي رايانه نظير تلويزيون داراي ضريب نسبت ۴:۳ مي باشند، يعني اينكه نسبت پهنا به ارتفاع معادل ۴ به ۳ است. اندازه صفحه برحسب اينچ اندازه گيري شده و معادل قطر نمايشگر است.
اندازه نمايشگرهاي Notebook اغلب كوچكتر بوده و داراي دامنه بين ۱۲ تا ۱۵ اينچ مي باشند. اندازه نمايشگر به طور معمول تأثير مستقيمي بر روي وضوح تصوير خواهد داشت، يعني يك تصوير بر روي مانيتور ۲۱ اينچ با وضوح تصوير ۴۸۰*۶۴۰ به خوبي مشاهده تصوير بر روي يك مانيتور ۱۵ اينچ با همان وضوح تصوير نخواهد بود. در نتيجه مشاهده تصوير بر روي يك مانيتور با ابعاد كوچك كيفيت بالاتري خواهد داشت.

نكته: اغلب اوقات اندازه واقعي قطر صفحه نمايش از اعداد ذكرشده كوچك تر است به عنوان مثال قطر واقعي يك نمايشگر ۱۵ اينچ ممكن است ۸/۱۳ اينچ باشد و يا قطر صفحه نمايش نمايشگر ۱۷ اينچ ممكن است حدود ۸/۱۵ اينچ باشد.
اگه خوشتون اومد نظر بدید
اگه خوشتون اومد نظر بدید

دوشنبه 19/6/1386 - 1:28
کامپیوتر و اینترنت

آموزش سخت افزار (قسمت چهاردهم)


موشواره (موش)

امروزه موش داراي جايگاه خاصي مي باشد. موش قادر به تشخيص حركت و كليك بوده و پس از تشخيص لازم، اطلاعات مورد نياز را به رايانه ارسال مي كند تا عمليات مورد نياز انجام شود. در سيستم هاي اوليه موشي وجود نداشته زيرا رايانه ها در آن زمان داراي اينترفيسي مشابه ماشين هاي تايپ يا كارت پانچ بودند. بعداز چندين سال كليد هاي پيكاني در اغلب ترمينال ها مورد استفاده قرار گرفتند، (حدوداً اواخر سال ۱۹۶۰ و اوايل ۱۹۷۰) سپس مدادهاي نوري و Joy Stickها به بازار عرضه شدند، تا اينكه موش به همراه رايانه هاي مكينتاش ارائه گرديد و اين يك موفقيت بزرگ بود.
عملكرد موش طبيعي و قيمت آن بسيار ارزان بود تا اينكه سيستم هاي عامل نيز از موش حمايت كردند.
مهم ترين عملي كه موش انجام مي دهد تبديل حركت دست به سيگنال هايي است كه رايانه قادر به استفاده از آن مي باشد.
اجزاي اصلي موش
- گوي كوچكي درون موش قرار دارد و سطح مورد نظر را لمس نموده، حركت كرده و مي چرخد.
- دو غلتكي كه گوي را لمس مي كنند (كه يكي حركت x را تشخيص مي دهد و ديگري حركت y را.)
- هر غلتك به يك ميله متصل مي باشد و ميله باعث چرخش ديسك مي گردد.
- در دو طرف ديسك دو قطعه اصلي وجود دارد كه يكي LED مادون قرمز و ديگري سنسور مادون قرمز مي باشد. ديسك داراي سوراخ هايي مي باشد كه باعث شكست نور مي شود، اين نور توسط LED ايجاد مي شود بدين ترتيب سنسور مادون قرمز پالس هاي نور را مشاهده مي كند. تعداد پالس ها با سرعت موش و مسافتي كه موش حركت مي كند ارتباط مستقيم دارد.
- پردازنده اي كه بر روي برد قرار دارد ، پالس ها را خوانده و تبديل به باينري مي كند و به رايانه ارسال مي نمايد.
نكته: قطر گوي موش تقريباً ۲۱ ميليمتر، قطر غلتك ۷ ميليمتر و تعداد سوراخ هاي ديسك ۳۶ عدد مي باشد.
موش هاي نوري
اين موش ها در اواخر سال ۱۹۹۹ به بازار ارائه گرديدند و در هر ثانيه توسط دوربين كوچك خود ۱۵۰۰ تصوير مي گيرند. اين موش ها در محل مسطحي قابل استفاده مي باشند.
موش هاي نوري داراي يك LED قرمزرنگ مي باشند كه باعث تشعشع نور درون يك سنسور CMOS مي باشد. اين سنسور هر تصوير را براي تجزيه و تحليل در اختيار پردازنده سيگنال هاي ديجيتال (DSP) قرار مي دهد.
DSP با سرعت ۱۸ ميليون دستور العمل در ثانيه عمليات خود را انجام مي دهد و قادر به تشخيص الگوهاي موجود در تصاوير و نحوه تغيير آنها با تصوير قبلي مي باشد. DSP قادر به تشخيص ميزان حركت موش بوده و پس از آن مختصات مربوطه را براي رايانه ارسال مي كند. رايانه نيز مكان نما را در مختصات تعيين شده بر روي مانيتور قرار خواهد داد.
كانكتورهاي موش
اغلب موش ها امروزه از يك كانكتوراستاندارد PS /2 استفاده مي نمايند. اين كانكتورها داراي۶ پين مي باشند.
هر يك از اين پين ها عملكرد مخصوصي دارند. زماني كه موش حركت مي كند و يا كاربري دكمه آن را كليك مي نمايد، موش ۳ بايت اطلاعات را براي رايانه ارسال مي نمايد.
بايت اول شامل وضعيت دكمه سمت چپ، وضعيت دكمه سمت راست، صفر، يك، جهت x، جهت y و موارد ديگر مي باشد. دو بايت بعدي شامل مقادير x و y و تعداد پالس هاي تشخيص داده شده در جهت x و y نسبت به آخرين اطلاعات ارسال شده مي باشند.
كليد ها
بيشتر موش ها داراي دو كليد مي باشند، بعضي از موش ها سه يا چهار كليد دارند. كليد سمت چپ براي ضربه زدن روي نمادها يا گزينه هاي پنجره هاي برنامه استفاده مي شود.
كليد سمت راست نيز براي فراخواني از فرمان يا ميانبرها به كار مي رود. كليدي كه بين كليد هاي چپ و راست، پايين آن و يا در كناره قاب موش قراردارد براي پيمايش صفحه (Scroll) استفاده مي شود.
موش هاي بي سيم
اين موش ها اطلاعات خود را از طريق موج هاي راديويي و يا نور مادون قرمز به رايانه ارسال مي كنند در نتيجه سيمي به كار نمي رود. موش هاي بي سيم داراي فرستنده، باتري و گيرنده متصل به كارت اصلي مي باشند.

اگه خوشتون اومد نظر بدید

دوشنبه 19/6/1386 - 1:27
کامپیوتر و اینترنت

آموزش سخت افزار (قسمت ۱۳)

برد اصلي (Mother Board) (بخش دوم)

مادربرد آن برد (On Board)
بعضي مواقع مادربردها كارت صدا، گرافيك، مودم و شبكه را به صورت مجتمع دربردارد و ديگر نيازي نيست تا آنها را به صورت جداگانه خريداري نمود و بر روي آن نصب كرد. به اينگونه بردهاي اصلي آن برد مي گويند، و معمولا داراي قيمت كمتري مي باشند. به اين دليل كه عموماً قابل ارتقا، تغيير و تعمير نمي باشند.
مادربردهاي آن برد معمولاً دربرگيرنده يك يا چند مورد از قطعات گفته شده مي باشند كه مي توان بعضي از آنها را غيرفعال نمود و كارت موردنظر خود را بر روي آن نصب كرد با توجه به اينكه اينگونه مادربردها اسلات هاي كمتري دارند، بنابراين انعطاف پذيري كمتري نيز دارند.

گذرگاه هاي توسعه
گذرگاه يا خط حامل، يك مسير عمومي است كه داده ها از روي آن نقل و انتقال مي كنند. اين مسير به وسيله مدارهاي الكتريكي بين قسمت هاي ديگر يك رايانه ارتباط برقرار مي كنند. اين مقدار داده ها مي توانند به صورت همزمان از گذرگاه ها عبور كنند و مقدار آنها بر حسب بيت مي باشد. به طور معمول ۴ گذرگاه اصلي در رايانه ها وجود دارد:
۱- گذرگاه پردازنده
۲- گذرگاه حافظه
۳- گذرگاه آدرس
۴- گذرگاه ورودي- خروجي
گذرگاه پردازنده مسير ارتباط پردازنده و تراشه هاي مجتمع يا چيپ ست هاست.
اين گذرگاه ،داده ها را به سرعت به پردازنده منتقل مي كند و از آن به بيرون مي فرستد و سرعت آن نسبت به ساير گذرگاه ها بسيار سريعتر مي باشد، گذرگاه حافظه ،داده ها را بين پردازنده، رم و حافظه رم انتقال مي دهد.
مهم ترين گذرگاه هاي توسعه عبارتند از:
گذرگاه ISA: همان طور كه مي دانيد در رايانه قطعات مختلف از طريق يك سري خطوط با يكديگر ارتباط دارند كه به آن ها خط حامل مي گويند. درواقع قطعات موردنياز بر روي اين خط قرار مي گيرند.
اين گذرگاه هاي ۸ بيتي ISA نام داشتند، سپس در چند سال بعد گذرگاه هاي ۱۶ بيتي به بازار عرضه شدند، اين گذرگاه ها به علت ضريب اطمينان بالا، كارابودن و سازگاري هنوز به كار مي روند.
گذرگاه ESA :پس از توليد رايانه ۳۸۶ گذرگاه هاي عريض ۳۲ بيتي به كار گرفته شد. اين گذرگاه ها داراي شكاف هاي ۳۲ بيتي مي باشند به همين دليل نمي توان در آنها از كارت هاي ۸ يا ۱۶ بيتي استفاده كرد.
نكته: نوعي از گذرگاه ISA به نام MCK بوجود آمد، كه معماري گذرگاه ۱۶ بيتي و ۳۲ بيتي را با هم داشت اين سيستم از سيستم هاي ISA سريعتر و با آن ها ناسازگارتر بود. گذرگاه هاي ديگري مانند گذرگاه VESA، Local Buss، PCT، USP، AGP و موارد ديگر نيز وجود دارند كه به علت محدوديت آموزشي به توضيح آن ها نمي پردازيم.
نصب و تعويض كارت ها
همان طور كه مي دانيد مدارهاي گرافيك، صدا، تصوير، مودم و ساير موارد كه بر روي يك صفحه قرار گرفته اند را كارت مي گويند. جهت تعويض يا نصب آنها در رايانه اعمال زير را انجام دهيد:
* با پيچ گوشتي پيچ هاي نگهدارنده كارت را باز كنيد. بدون اينكه كارت هيچ گونه مقاومتي از خود نشان دهد آن را با احتياط و با حركت دادن به سمت جلو و عقب با كشيدن تدريجي به سمت بالا از محل خود جدا كنيد.

فراموش نكنيد كه بهتر است در هنگام نصب كارت ها جهت تغيير كليدهاي اتصال گر و جامپرها به دفترچه يا ورقه راهنماي كارت مراجعه نماييد.
درگاه خارجي
يك رايانه بدون رابط هايي كه آن را براي تبادل اطلاعات به بيرون وصل مي كند نمي تواند كار كند. بدين ترتيب درگاه ها و رابط هاي رايانه نقش بزرگي را برعهده دارند.
۱ - درگاه سريال: اين درگاه درپشت رايانه قراردارد به درگاه هاي com نيز مشهورند و جزء اولين درگاه هايي هستند كه در رايانه هاي اوليه به كار برده شدند. درگاه هاي سريال قديمي ۲۵ پايه اي و درگاه هاي سريال جديد ۹ پايه اي هستند يعني درگاه سريال رايانه را با ۹ سيم به وسايل جانبي متصل مي كند.
۲ - درگاه موازي: به اين درگاه ها درگاه چاپگر نيز مي گويند اما در حال حاضر براي اتصال اسكنر و موارد ديگر نيز به كار مي رود، اين درگاه بزرگ ترين درگاه در پشت رايانه است كه ۲۵ سيمي مي باشد كه ۱۷ سيم آن براي سيگنال ها به كار مي رود. سيگنال ها به سه گروه داده ها، كنترل و وضعيت تقسيم مي شوند.
۳ - درگاه اسكازي: اين درگاه مي تواند اطلاعات را با سرعت بالايي جابه جا نمايد. اين درگاه براي بيشتر اسكنرها و CD و DVD نويس ها به كار مي رود.
۴ - درگاهPS/2 : اين درگاه داراي ۶ پايه سوزن براي انتقال داده هاست. كه بيشتر براي استفاده صفحه كليد و ماوس به كار مي رود.
۵ - درگاه سريال Firewire :اين درگاه براي اتصال دوربين هاي ويديوئي، نمايشگرهاي رقمي (ديجيتال)، سيستم هاي صوتي و يا سيستم ماهواره هاي رقمي به رايانه استفاده مي شود.
۶ - رابط هاي DIDE: بر روي مادربرد چند رابط براي ذخيره سازي وجود دارد كه عبارتند از رابط ايده (آي دي يو)، كه در رايانه هاي قديمي وجود داشت و از آن مي توان براي اتصال دو وسيله مانند هارد ديسك و ديسك گردان CD به رايانه استفاده نمود ورابط ايده توسعه يافته كه اين رابط از رابط ايده سريعتر است و به وسيله آن مي توان چهار مورد ديگر را به رايانه وصل نمود.
كنترل گر
ابزارهاي جانبي در رايانه با ابزاري به نام كنترل گر با پردازنده و ديگر اجزا ارتباط برقرار مي كنند كه نام هاي ديگر آن رابط و آداپتر مي باشد. به طور مثال هارد ديسك و صفحه كليد با كنترل گر كار مي كند و كارت گرافيكي با آداپتر. كنترل گرها يا بر روي يك كارت جدا قرار دارند و يا بر روي مادربرد.

اگه خوشتون اومد نظر بدید

دوشنبه 19/6/1386 - 1:27
کامپیوتر و اینترنت

آموزش سخت افزار (قسمت ۱۲)


برد اصلي (Mother Board)


(بخش اول)
بزرگترين بردي كه در داخل كيس رايانه مشاهده مي شود، مادربرد است. اين برد يكي از اجزاي اساسي و مهم محسوب مي شود. در سال ۱۹۸۲ همزمان با ارائه اولين كامپيوترهاي شخصي از برد اصلي استفاده گرديد. اين برد دربرگيرنده پروسسور، رم، انواع درايوها (اعم از هارد ديسك، سي دي رام، فلاپي درايو) و ساير موارد مي باشد. اين قطعات بوسيله كابل به برد اصلي متصل هستند ، در زمان كار كردن رايانه، اطلاعات درايوها، پروسسور و رم در حال انتقال در اين برد مي باشد. مثلاً زماني كه برنامه اي را اجرا مي كنيم يا فايلي را ذخيره مي نماييم كارت هاي مودم، شبكه، صدا و گرافيك بوسيله اسلات هاي مادربرد به آن وصل مي شوند و زماني كه در حال كار با اينترنت هستيم، موسيقي گوش مي دهيم و يا برنامه اي را اجرا مي كنيم اطلاعات بين كارت ها، برد و پروسسور در حال رد و بدل است. جهت اتصال قطعات برروي مادربرد، شكاف يا اسلات وجود دارد. اكثر كارت ها داراي يك لبه اتصال دهنده مي باشند كه از طريق اين لبه برروي شكاف ها قرار دارند.
برد اصلي شامل چند چيپ ست مي باشد و اين چيپ ها نقل و انتقال اطلاعات بين پروسسور و ديگر اجزا را ميسر مي سازند. مادربردها در انواع مختلفي از نظر شكل و اندازه توليد مي شوند. شكل و اندازه آن ها متناسب با كيس هاي موجود در بازار مي باشد. اگر مادربرد خراب باشد رايانه از كار مي افتد. توجه داشته باشيد كه مادربردها داراي امكانات مشابهي نمي باشند و اگر مادربردي كارت خاصي را پشتيباني نكند نمي توان از آن كارت استفاده كرد. در ضمن اينكه همه مادربردها نمي توانند با همه پردازنده ها كار كنند.
اجزاي اصلي مادربرد
وجود تمام قطعاتي كه برروي مادربرد قرار دارند الزامي مي باشد. اين قطعات عبارتند از:
۱- تراشه هاي حافظه اصلي(رم) و جايگاه آن
۲- پردازنده و تراشه گير پردازنده
۳- تراشه هاي حافظه BIOS
۴- كمك پردازنده و جايگاه آن
۵- كليدهاي قطع و وصل و اتصال گرهاي تنظيم (جامپرها)
۶- محل اتصال كابل هاي برق
۷- محل اتصال صفحه كليد
۸- محل اتصال بلندگو
۹- محل قرارگيري شكاف ها يا اسلات ها
۱۰- باتري و محل اتصال آن
۱۱- چندين قطعه الكترونيكي ديگر مانند خازن ها، كريستال، مقاومت ها، چيپ ست ها و ساير موارد
خازن ها انرژي را ذخيره مي كنند و معمولاً براي تنظيم امواج، به عنوان يكسو كننده، جهت تبديل جريان متناوب به مستقيم به كار مي رود. كريستال ها ضربان هاي ساعت را در فاصله هاي زماني ثابت توليد مي كنند و مقاومت ها نيز ولتاژ امواج را تغيير مي دهند.
انواع مادربردها از نظر شكل
همان طور كه مي دانيد اندازه مادربردها بايد با منبع تغذيه و جعبه رايانه متناسب باشد. انواع مادربردها از نظر شكل عموماً به موارد زير تقسيم مي شود:
۱- مادربرد سبك PC/XT
۲- مادربرد سبك AT/Full size
۳- مادربرد سبك Baby AT or Mini AT
۴- مادربرد سبك LPX
۵- مادربرد سبك ATX
۶- مادربرد سبك NLX
- مادربرد سبك PC/XT در سال ۱۹۸۱ به بازار عرضه شد و هم اكنون مورد استفاده قرار نمي گيرد. طول آن در حدود ۳۰ و عرض آن در حدود ۲۰ سانتي متر و داراي ۵ شكاف براي كارت ها بود.
- مادربرد سبك AT/Full size در سال ۱۹۸۴ به بازار عرضه شد. طول آن ۳۵ و عرض آن ۳۰ سانتي متر مي باشد و تقريباً از دور خارج شدند و ديگر توليد نمي شوند، زيرا بسيار بزرگ بودند.
- مادربرد سبك Baby AT or Mini AT تقريباً استاندارد مادربرد AT/Full size را دارد ولي از نظر اندازه كوچك تر از آن است. از آنجايي كه اين مادربرد در هر جعبه اي جاي مي گيرد، بيشتر مادربردهاي كنوني بدين شكل توليد مي شوند.
- مادربرد LPX مانند نوع قبل داراي دو گونه كوچك و بزرگ بود. اين مادربرد داراي اين امكان است كه بعد از نصب اتصالات مختلف در قسمت عقب قرار مي گيرد و شكاف ها بر روي يك كارت جدا نصب مي شود و اتصال گرها در كنار هم در عقب مادربرد قرار مي گيرند. درضمن اينكه اين نوع مادربردها داراي اتصال گرهاي اضافي نيز مي باشند.
- مادربرد ATX در سال ۱۹۹۵ طراحي شدند كه شباهتي به مادربردهاي Baby AT or Mini AT دارند. با اين تفاوت كه ۹۰ درجه تغيير شكل يافته اند، در اين گونه مادربردها تهويه رايانه به خوبي انجام مي شود و داراي يك نوع جامپر مي باشد. در اين نوع بردهاي اصلي نمي توان از هر دو نوع حافظه استفاده نمود. اين نوع بردها داراي امكاناتي مي باشند كه مي توان بدون استفاده از كابل هاي بلند قطعات را بر روي آن وصل كرد زيرا داراي جايگاه هاي خاصي مي باشند. درضمن اينكه مي توان بر روي شكاف هاي آن هر كارتي با هر طولي را بر روي آن نصب كرد.- كار با مادربرد NLX بسيار ساده مي باشد. تعميرات، نگهداري و ارتقاء آنها نيز ساده تر است.
اگه خوشتون اومد نظر بدید

دوشنبه 19/6/1386 - 1:25
کامپیوتر و اینترنت

آموزش سخت افزار (قسمت يازدهم)


آموزش CPU (ريزپردازنده يا ميكرو پروسسور) (بخش دوم)

شركت هاي توليد كننده پردازنده
با توجه به اين كه پردازنده ها دستورهاي خاصي را مي پذيرند و برنامه هاي خاصي را اجرا مي كنند، طبيعتاً پردازنده هاي گوناگوني وجود دارند. اين پردازنده ها توسط شركت هاي مختلفي توليد مي شوند. بعضي از آن ها مشابه و سازگارند و برخي ديگر ناسازگار. معروف ترين اين شركت ها عبارتنداز: Intel- IBM- AMD- Cyrix- Motorola- IDT- IIT- NEC- Nexgen- Rise- Metaflow- Chips & Technology معمولاً بر روي هر CPU نام شركت توليد كننده نوشته مي شود، ممكن است شماره آن نيز همراه با حرف اول و يا دو حرف اول توليد كننده نوشته شود.
نسل هاي پردازنده ها
مهم ترين عامل شناسايي پردازنده ها، نوع آنها مي باشد كه با شماره و يا نام اختصاصي مشخص مي شود. از بين پردازنده هاي توليد شده نوع اينتل و موتورولا متداولتر از بقيه هستند. موتورولا پردازنده خود را به صورت ۸۶xxx يا نام اختصاصي و اينتل به صورت ۸۰x86 يا نام اختصاصي خود به بازار معرفي نمودند. بدين صورت x مي تواند يك عدد دلخواه يك رقمي باشد كه هر چه مقدار آن بيشتر باشد در نتيجه رقم آن بزرگ تر بوده و پردازنده جديد تر، سريعتر و كاراتر مي باشد. قبل از پردازنده پنتيوم پردازنده ها يك شماره ۵ رقمي داشتند كه دو رقم سمت چپ معمولاً نام پردازنده و سه رقم سمت راست نسل پردازنده رامشخص مي كنند.
برخي سازندگان ديگر به جاي شماره از نام هاي اختصاصي مانند K5 و K6 استفاده مي نمودند.
مدل پردازنده
هر كدام از نسل هاي مختلف پردازنده ها داراي انواع متفاوتي مي باشند كه براي كارهاي خاصي ساخته شده اند. به عنوان مثال پردازنده هاي ۸۰۴۸۶ داري انواع (SX- SLC- DX- DX2- DX3- DX4- DX5) مي باشد كه در آن DX اولين پردازنده با يك كمك پردازنده است كه داراي ۸ كيلوبايت حافظه زمان اوليه مي باشد و سرعت آن۵۰ برابر ۸۰۸۸ است، در صورتي كه SX فاقد كمك پردازنده مي باشد. نسل پنجم پردازنده اينتل داراي مدل هاي (كلاسيك، MMX) مي باشد. نسل ششم پردازنده اينتل داراي مدل هاي (IIT,II ,PRO Celeron ) هستند. نسل هفتم پردازنده هاي اينتل داراي مدل هاي (ايتانيوم) ۶۴ بيتي با سرعت يك گيگاهرتز) مي باشد.
سرعت پردازنده
يكي از مواردي كه مستقياً روي كارآيي پردازنده اثر مي گذارد سرعت آن است كه معمولاً بر روي آن نوشته مي شود. هر چه پردازنده سريعتر باشد اطلاعات را سريعتر پردازش مي كند. سرعت پردازنده ها بر حسب مگاهرتز بيان مي شود و يك مگاهرتز، معادل يك ميليون چرخه در ثانيه است. بعضي توليد كنندگان سرعتي كه بر روي پردازنده مي نويسند واقعي نيست، بلكه آنها توانمندي پردازنده در مقابل اينتل را مي سنجند و به آن سرعت معادل پنتيوم مي گويند. عوامل مؤثر در كارآيي پردازنده فركانس ساعت يا سرعت ساعت است كه معمولاً به دو صورت مي باشد: ۱- سرعت ساعت داخلي: در اين حالت پردازنده عمليات داخلي خود را براساس اين ساعت انجام مي دهد، اين سرعت برابر سرعتي است كه بر روي پردازنده ذكر شده است. در هنگام فروش نيز اين سرعت را معرفي مي كنند. مانند:P4/2.2Ghz
۲- سرعت ساعت خارجي (سرعت گذرگاه سيستم): اين سرعت درواقع مدار الكترونيكي است كه خارج از تراشه قرار دارد و به پايه هاي مربوط به ساعت وصل مي شود. اطلاعات خارج از پردازنده مانند اطلاعات حافظه اصلي رايانه بر اين اساس سنجيده مي شود.
ولتاژ پردازنده
در ابتداي ساخت پردازنده ها از ولتاژ ۵ ولتي به صورت استاندارد استفاده مي شد، اما پس از ورود پردازنده هاي «۴۸۶ دي ايكس ۴» و «پنتيوم» از ولتاژهاي پايين تر مانند ۸/۲ و ۳/۳ نيز استفاده مي شود.
جايگاه پردازنده
پردازنده معمولاً بر روي شبكه اي از سوراخ هاي كوچك بر روي مادربرد قرار مي گيرد. به طور كلي تراشه گير، محلي براي نصب پردازنده يا هر نوع آي سي است.
پردازنده معمولاً روي مادربرد لحيم نمي شود تا بتوان آن را ارتقا يا تعويض نمود.
گرماگير پردازنده
پردازنده ها در زمان كار كردن گرماي زيادي توليد مي كنند و اگر اين گرما دفع نشود ممكن است پردازنده بسوزد. براي خنك نگه داشتن پردازنده از چند روش استفاده مي كنند:
۱- استفاده ازFan : قرارگيري يك پنكه كوچك بر روي پردازنده باعث حركت هوا و هدايت گرما به بيرون مي شود. معمولاً در جعبه اصلي رايانه پنكه اي براي بيرون بردن گرما وجود دارد. با اين حال قرار دادن يك پنكه كوچك پردازنده را بهتر خنك مي كند و كارآيي رايانه بالا مي رود. بعضي از پنكه ها براي اتصال به پردازنده داراي يك گيره مي باشد كه بايد توجه نمود در هنگام نصب نبايد به مادربرد برخورد كند.
۲- استفاده از گرماگير: گرماگير وسيله اي فلزي است كه حرارت توليد شده را به وسيله يك قطعه الكتريكي جذب و به بيرون مي فرستد. گرماگير داراي پره هاي فلزي يا سراميكي است.
۳- استفاده از مواد پركننده: اين مواد بين پردازنده و پنكه قرار مي گيرد و باعث خنك شدن پردازنده مي شود. اين ماده با نام چسب نيز شناخته مي شود.
پردازنده هاي تقلبي
جهت تشخيص پردازنده هاي تقلبي از اصل مي توان از روش هاي زير استفاده نمود:
۱- روش چشمي: كج بودن نوشته هاي روي پردازنده - كم رنگ بودن نوشته ها - وجود خراش - وجود رنگ پريدگي چاپ قبلي - كوچك و بزرگ بودن حروف و عددها
۲- شماره سريال: جهت دريافت شماره سريال هاي واقعي مي توانيد از برنامه ID CPUاستفاده نماييد و يا به سايت پردازنده مربوطه متصل شويد.
۳- اطلاعات بايوس.
۴- اطلاعات برنامه هاي عيب ياب.
خرابي پردازنده ها
يكي از علت هاي خوب كار نكردن رايانه مي تواند خرابي پردازنده باشد كه البته در اولويت قرار ندارد يعني درصد خراب شدن آن بسيار كم مي باشد. برنامه اي به نام پست خطاي پردازنده را اعلام مي كند كه آن را با زدن بوق هاي پشت سر هم بيان مي كند.
برنامه ديگر در اين رابطه Ndiags نورتن مي باشد كه پردازنده را تست و كنترل مي كند.
اگه خوشتون اومد نظر بدید

دوشنبه 19/6/1386 - 1:24
کامپیوتر و اینترنت

آموزش سخت افزار (قسمت دهم)


آشنايي با CPU (ريزپردازنده يا ميكرو پروسسور) (بخش اول)

ريزپردازنده واحد پردازش مركزي يا مغز رايانه مي باشد. اين بخش مدار الكترونيكي بسيار گسترده و پيچيده اي مي باشد كه دستورات برنامه هاي ذخيره شده را انجام مي دهد. جنس اين قطعه كوچك (تراشه) نيمه رسانا است. CPU شامل مدارهاي فشرده مي باشد و تمامي عمليات يك ميكرو رايانه را كنترل مي كند. تمام رايانه ها (شخصي، دستي و...) داراي ريزپردازنده مي باشند. نوع ريزپردازنده در يك رايانه مي تواند متفاوت باشد اما تمام آنها عمليات يكساني انجام مي دهند.

تاريخچه ريزپردازنده
ريزپردازنده پتانسيل هاي لازم براي انجام محاسبات و عمليات مورد نظر يك رايانه را فراهم مي سازد. در واقع ريزپردازنده از لحاظ فيزيكي يك تراشه است. اولين ريزپردازنده در سال ۱۹۷۱ با نام Intel ۴۰۰۴ به بازار عرضه شد. اين ريزپردازنده قدرت زيادي نداشت و تنها قادر به انجام عمليات جمع و تفريق ۴ بيتي بود. تنها نكته مثبت اين پردازنده استفاده از يك تراشه بود، زيرا تا قبل از آن از چندين تراشه براي توليد رايانه استفاده مي شد. اولين نوع ريزپردازنده كه بر روي كامپيوتر خانگي نصب شد. ۸۰۸۰ بود. اين پردازنده ۸ بيتي بود و بر روي يك تراشه قرار داشت و در سال ۱۹۷۴ به بازار عرضه گرديد. پس از آن پردازنده اي كه تحول عظيمي در دنياي رايانه بوجود آورد ۸۰۸۸ بود. اين پردازنده در سال ۱۹۷۹ توسط شركت IBM طراحي و در سال ۱۹۸۲ عرضه گرديد. بدين صورت توليد ريزپردازنده ها توسط شركت هاي توليدكننده به سرعت رشد يافت و به مدل هاي ۸۰۲۸۶، ۸۰۳۸۶، ۸۰۴۸۶، پنتيوم ۲، پنتيوم ۳، پنتيوم ۴ منتهي شد.
اين پردازنده ها توسط شركت Intel و ساير شركت ها طراحي و به بازار عرضه شد. طبيعتاً پنتيوم هاي ۴ جديد در مقايسه با پردازنده ۸۰۸۸ بسيار قوي تر مي باشند زيرا كه از نظر سرعت به ميزان ۵۰۰۰ بار عمليات را سريعتر انجام مي دهند. جديدترين پردازنده ها اگر چه سريعتر هستند گران تر هم مي باشند. كارآيي رايانه ها بوسيله پردازنده آن شناخته مي شود. ولي اين كيفيت فقط سرعت پروسسور را نشان مي دهد نه كارآيي كل رايانه را. به طور مثال اگر يك رايانه در حال اجراي چند نرم افزار حجيم و سنگين است و پروسسور پنتيوم ۴ آن ۲۴۰۰ كيگاهرتز است، ممكن است اطلاعات را خيلي سريع پردازش كند. اما اين سرعت بستگي به هاردديسك نيز دارد. يعني اين كه پروسسور جهت انتقال اطلاعات زمان زيادي را در انتظار مي گذراند.
پروسسورهاي امروزي ساخت شركت Intel، پنتيوم ۴ و سلرون هستند. پروسسورها با سرعت هاي مختلفي برحسب گيگاهرتز (معادل يك ميليارد هرتز با يك ميليارد سيكل در ثانيه است) براي پنتيوم ۴ از ۴/۱ گيگاهرتز تا ۵۳/۲ متغير است و براي پروسسور سرعت از ۸۵/۰ گيگاهرتز تا ۸/۱ گيگاهرتز است. يك سلرون همه كارهايي را كه يك پنتيوم ۴ انجام مي دهد را مي تواند انجام دهد اما نه به آن سرعت.
پردازنده دو عمل مهم انجام مي دهد:
۱- كنترل تمام محاسبات و عمليات
۲- كنترل قسمت هاي مختلف
پردازنده در رايانه هاي شخصي به شكل يك قطعه نسبتاً تخت و كوچك به اندازه ۸ يا ۱۰ سانتي متر مربع كه نوعي ماده، مانند پلاستيك يا سراميك روي آن را پوشانده است تشكيل شده در واقع فرآيند بوجود آمدن اين مغز الكترونيكي به اين گونه مي باشد كه از سيليكان به علت خصوصيات خاصي كه دارد جهت ايجاد تراشه استفاده مي شود. بدين گونه كه آن را به صورت ورقه هاي بسيار نازك و ظريف برش مي دهند و اين تراشه ها را در درون مخلوطي از گاز حرارت مي دهند تا گازها با آنها تركيب شوند و بدين صورت طبق اين فرآيند شيميايي سيليكان كه از جنس ماسه مي باشد به فلز و بلور تبديل مي شود كه امكان ضبط و پردازش اطلاعات را در بردارد. اين قطعه كار ميليونها ترانزيستور را انجام مي دهد.
پردازنده وظايف اصلي زير را براي رايانه انجام مي دهد:
۱- دريافت داده ها از دستگاه هاي ورودي
۲- انجام عمليات و محاسبات و كنترل و نظارت بر آنها
۳- ارسال نتايج عمليات با دستگاه هاي خروجي
پردازنده مانند قلب رايانه است و از طريق كابلهاي موجود با واحدهاي ديگر مرتبط مي شوند.
در واقع از نظر فني عملكرد پردازنده با دو ويژگي تعيين مي شود:
۱- طول كليد- تعداد بيت هايي كه يك پردازنده در هر لحظه پردازش مي كند و طول اين كلمات معمولاً ۴ و ۸ و ۱۶ و ۳۲ و يا ۶۴ بيتي مي باشد.
۲- تعداد ضربان الكترونيكي كه در يك ثانيه توليد شده است و با واحد مگاهرتز سنجيده مي شود.
محل قرارگيري پردازنده ها بر روي مادربرد مي باشد. بنابراين بايستي هماهنگي لازم بين مادربرد و پردازنده وجود داشته باشد. اين هماهنگي باعث بالا رفتن عمليات رايانه مي شود. در غير اين صورت نتيجه خوبي بدست نمي آيد.
نكته: بر روي پردازنده حروف و ارقامي ديده مي شود كه در واقع نشان دهنده شماره سريال ها ،سرعت، ولتاژ، مدل، نسل و نام سازنده آن مي باشد. با توجه به نوع دستورالعمل ها يك ريزپردازنده با استفاده از واحد منطبق و حساب خود (ALU) قادر به انجام عمليات محاسباتي مانند جمع و تفريق و ضرب و تقسيم است. البته پردازنده هاي جديد اختصاصي براي انجام عمليات مربوط به اعداد اعشاري نيز مي باشند. ريزپردازنده قادر به انتقال داده ها از يك محل حافظه به محل ديگر مي باشند و مي توانند تصميم گيري نمايند و از يك محل به محل ديگر پرش داشته باشد تا دستورالعمل هاي مربوط به تصميم اتخاذ شده را انجام دهد.

اگه خوشتون اومد نظر بدید

دوشنبه 19/6/1386 - 1:24
کامپیوتر و اینترنت

آموزش سخت افزار (بخش نهم)


كارت صدا (۲)
عمليات كارت صدا

كارت صدا چهار عمليات خاص در ارتباط با صدا انجام مي دهد:
- ضبط صدا با حالات متفاوت
- پخش موزيك هاي از قبل ضبط شده مانند: MP3، Wav و يا DVD
- تركيب نمودن صداها
- پردازش صوت هاي موجود

توليد كنندگان كارت صدا
شركت هاي مختلفي كارت صدا را مي سازند. مهم ترين اين سازنده ها عبارتنداز شركت هاي:
Creative-S3- Trident Yamaha- Ensoniq- Cirrus Logic- ِِِDiammond- ESS- Opti 931- Opti 933- 3DJ- 3DX-Genius- Asound

در هنگام خريد كارت صدا به چه نكاتي بايد توجه كرد؟
به دليل اين كه مادربردهاي جديد داراي كارت صدا به صورت سرخود مي باشند، بنابر اين ديگر نيازي نيست كه كارت صدا را به صورت جداگانه خريداري نمود. جز در مواردي كه براي كارهاي حرفه اي از كارت صدا استفاده مي شود.
دو نوع استاندارد اختصاصي براي كارت هاي صدا وجود دارد. (استاندارد Adlih و Sound Blaster) اغلب كارتهاي صوتي با Sound Blaster سازگاري دارند. با توجه به اين كه كارت صوتي نبايد با اين استاندارد به راه انداز خاصي نياز داشته باشد.
به غير از استانداردهاي ذكر شده، استانداردهاي ديگري هم وجود دارند. اكثر برنامه هاي كاربردي صوتي براي محصولاتي نوشته مي شوند كه عموميت دارند. براي همين بيشتر سازندگان، كارت هاي صوتي خود را تحت اين دو استاندارد مي سازند.
نكته: بيشتر بازي هاي تحت داس ازكارت هاي صوتي با استانداردهاي ساوند بلاستر، ساوند بلاستر ۱۶ و ساوند بلاستر پرو استفاده مي كنند.
در حال حاضر بيشتر سي دي رام ها داراي فيش ورودي هدفون يا بلند گو هستند. بدين ترتيب مي توان از صداهاي آن ها استفاده كرد.
اما در صورتي كه صداي بهتري مي خواهيد مي توانيد ازكارت صدا استفاده نماييد.

انواع رابط ها
جهت دريافت و ضبط از طريق كارت صدا لازم است رابط هاي زير وجود داشته باشد:
- رابط ورودي: اين رابط براي ورود داده هاي صوتي استفاده مي شود كه داراي انواع مختلفي مي باشند.
- رابط خروجي: اين رابط جهت ارسال سيگنال ها از كارت به وسايل خارج از رايانه به كار مي رود. يك سر كابل به كارت صوتي و سر ديگر آن به بلندگو و يا هدفون و سيم هاي استريو وصل مي شود.
_ رابط صوتي ويژه سي دي: اين نوع رابط ها جهت ارتباط بين ديسك گردان، سي دي و كارت صوتي مي باشد و اگر اين ارتباط برقرار نشود ديسك هاي سي دي صوتي پخش نمي شود و در اين حالت صدا تنها از طريق خروجي گوشي(هدفون) شنيده مي شود.
رابط ميدي بازي: اكثر كارت هاي صوتي داراي اين رابط مي باشند. اين رابط ۱۵ پايه دارد و D شكل است و مي توان به وسيله آن از ارگ هاي الكترونيكي، موسيقي را دريافت و به صورت فايل بر روي سي دي ذخيره كرد.

پردازنده كارت صوتي
در كارت صداهاي جديد تراشه مخصوصي به نام DSP اضافه شده است. كه مخفف Digital Signal Processor مي باشد. اين تراشه رايانه را از انجام پردازش سيگنال هاي صدا، پارازيت گيري، فشرده سازي داده ها و موارد ديگر معاف مي دارد.


كارت صوتي دوطرفه همزمان
در اين نوع كارت صدا داده ها مي توانند در دو مسير همزمان جريان داشته باشند. روي كارت صداهاي دوطرفه عبارت Full doplisk نوشته مي شود. بيشتر كارت صداهاي جديد داراي اين قابليت مي باشند. با اين كارت ها براي مكالمه تلفني بهتر از طريق رايانه استفاده مي شود.

حافظه كارت صدا
در بيشتر كارت صداهاي نوع آيزا حداقل ۲ مگابايت حافظه رم با نام حافظه نمونه سازي وجود دارد. اين نوع حافظه جهت حفظ صداهاي جدول موج و صداهايي كه خود كارت مي سازد استفاده مي شود. اما در نوع كارت هاي پي سي آي احتياجي به حافظه نمونه سازي نيست. زيرا پهناي باند در اين نوع كارت ها بزرگ مي باشد و صداها بر روي حافظه اصلي رايانه قرار مي گيرد.

استريو فونيك يا مونو فونيك
كارت هاي مونوفونيك صدا را از يك منبع پخش مي كنند كه به آن مونو يا يك كاناله مي گويند. در صورتي كه كارت هاي استريوفونيك به طور همزمان و از دو منبع مختلف پخش مي شود.
بعضي از برنامه هاي كاربردي صداي استريو را پشتيباني نمي كنند. كارت هاي استريو گران قيمت تر از مونو مي باشد. بيشتر كارت هاي صوتي داراي يك ورودي استريو يا دو ورودي مونو هستند.
نكته: در بيشتر كارت هاي صوتي حداقل ۱۶ بيت لازم است، اما برخي ديگر از ۲۴بيت و بيشتر استفاده مي كنند.

صداي سه بعدي
براي استفاده از صداي سه بعدي لازم است از كارت صدا و يا بلندگوي مخصوص و نيز برنامه اي كه جلوه هاي صوتي صداي سه بعدي را مورد پشتيباني قرار دهد، استفاده نمود.

عيب يابي كارت صدا
- اگر پس از نصب يك كارت صداي جديد در بعضي برنامه ها دچار مشكل صدا شويد، بايد تنظيم هاي برنامه ها را از نو تعيين كنيد. لازم است بعضي برنامه ها را دوباره نصب نمود تا با كارت جديد كار كند.
- اگر در بعضي برنامه ها صدا وجود دارد ولي هماهنگ با اعمال روي صفحه نيست لازم است برنامه هاي ديگر را ببنديد تا برنامه در حال اجرا بتواند بر همه منابع دسترسي پيدا كند.
- گاهي اوقات صداي خش خش و يا وزوز از بلندگو پخش مي شود دليل آن مزاحمت كارت هاي جانبي ديگر مي باشد. در اين صورت لازم است جاي شكاف كارت صوتي را عوض كرد. اگر باز هم اشكال رفع نشد بايد كابل هاي برق نزديك به كارت صوتي را از آن دور كرد.
- اگر صدايي از بلندگوهاي رايانه به گوش نمي رسد اعمال زير را انجام دهيد:
* محل اتصال بلندگو به منبع تغذيه چك كنيد.
* پيچ تنظيم بلندي صدا را تنظيم نماييد.
* سيم اتصال بلندگو به كارت را چك كنيد.
* صدا را در برنامه هاي نصاب بررسي نماييد.
* برنامه راه انداز كارت صوتي را دوباره نصب كنيد.

اگه خوشتون اومد نظر بدید

دوشنبه 19/6/1386 - 1:23
کامپیوتر و اینترنت

آموزش سخت افزار (قسمت هشتم)


كارت صدا(۱) Sound Card

كارت صدا يكي از عناصر سخت افزاري رايانه است كه باعث پخش و ضبط صدا مي گردد. قبل از گسترش كارت هاي صدا، صدا در رايانه توسط بلند گوهاي داخلي ايجاد مي شد. اين بلند گوها توان خود را از برد اصلي مي گرفتند.

استفاده از كارت صدا از اواخر سال ۱۹۸۰ شروع شد. در حال حاضر شركت هاي متعددي توليدات خود را در اين زمينه به بازار عرضه مي كنند. كارت صوتي همانند كارت گرافيكي بر روي برد اصلي نصب مي شود و در پشت آن چند فيش براي ميكروفن و بلند گو قرار دارد. وظيفه كارت صدا آماده سازي سيگنال ها جهت پخش و دريافت سيگنال هاي ورودي از ميكروفن و آماده كردن آنها براي ذخيره در رايانه است.
كارت صدا، كارت صوتي نيز ناميده مي شود و در بسياري موارد مي تواند اصواتي با كيفيت بسيار عالي توليد كند.
صوت، يك سيگنال آنالوگ است كه به صورت موج پيوسته انتشار مي يابد. رايانه همواره در حال پردازش سيگنال هاي آنالوگ است، زيرا اين سيگنال ها دائماً در حال تغييرند. در واقع لازم است كه سيگنال هاي آنالوگ به بيت هاي رقمي (ديجيتال) تبديل شوند. اين عمل توسط وسيله اي به نام Analog to Digital Convertor ADC)) صورت مي گيرد.
سيگنال هاي ديجيتالي توليد شده مجدداً بايد به سيگنال هاي آنالوگ تبديل شوند تا بتوانند به وسيله بلند گو پخش شوند. اين عمل توسط سخت افزار ديگري به نام DACصورت مي گيرد.
صداهاي ديجيتال به فضاي زيادي بر روي ديسك نياز دارد. بنابراين به جاي ذخيره صدا آن را ايجاد مي كند. اين عمليات شبيه سازي صوتي نام دارد و به روش هاي زير صورت مي گيرد:
FM -1(مدولاسيون بسامد): اين روش به صورت كاملاً مصنوعي صدا را ايجاد مي كند و براي ساخت آن از دو موج سينوسي استفاده مي كند.
۲- جدول موجي (صداي موجي): اين روش كم هزينه و واقعي تر است. در اين حالت از تمامي وسايل موسيقي نمونه گيري شده است و صداي ديجيتالي توليد شده در يك جدول موج ذخيره شده است. در صورتي كه يك برنامه به صدايي احتياج داشته باشد اين جدول موج چه در كارت صدا و چه در ديسك، صداي واقعي را به برنامه مي دهد. فايل هاي صوتي با پسوند Wav در ويندوز صداهاي واقعي هستند كه از جدول موج استفاده مي كنند.
بنابراين آهنگسازان حرفه اي ترجيح مي دهند اين گونه كارت هاي صدا را استفاده نمايند. اين صداها در تراشه هاي رام كارت صوتي ذخيره مي شوند و در نتيجه بسياري از توليد كنندگان بزرگ بودن حافظه جدول صوتي را دليل مرغوب بودن كارت صدا مي دادند.
۳- ) MIDIرابط ديجيتالي ادوات موسيقي): اين روش برخلاف روش قبلي صداي توليد شده را ضبط نمي كند، بلكه اطلاعات صدا مانند كوك، دوام، بلندي و ساير موارد را ضبط مي كند. اين اطلاعات در يك قالب استاندارد در فايل ذخيره مي شود و يا به يك وسيله موسيقي جهت اجرا ارسال مي شود. بنابراين يك فايل MIDI مجموعه اي از دستور العمل ها در مورد چگونگي اجراي نت هاست.

نكته: فايل هاي MIDI جهت برقراري ويدئو كنفرانس ها و پخش فيلم در اينترنت به كار مي روند.
۴- نمونه سازي فيزيكي:اين روش نسبتاً جديد است و بسته به نوع ساز شبيه سازي شده است. با اينكه داراي صداي خوبي است اما بار زيادي بر پردازنده اصلي وارد مي سازد.
اجزاي تشكيل دهنده كارت صدا
- پردازنده سيگنال هاي ديجيتال كه عمليات مورد نظر را انجام مي دهند.
- مبدل آنالوگ به ديجيتال (ACD) براي صوت ورودي به رايانه
- مبدل ديجيتال به آنالوگ (DAC)
- حافظه ROM يا فلش جهت ذخيره سازي اطلاعات
- اينترفيش دستگاه هاي موزيكال ديجيتالي (MIDI) جهت اتصال دستگاه هاي موزيك خارجي
- كانكتورهاي لازم جهت اتصال به ميكروفن يا بلند گو
- پورت مخصوص بازي براي اتصال Joystick
كارت هاي صوتي قديمي عمدتاً از نوع ISA بوده اند، اما كارت صداهاي امروزي از نوع PCI هستند كه بر روي برد اصلي نصب مي گردند.
بيشتر مادربردها در حال حاضر كارت صدا را به صورت يك تراشه بر روي برد اصلي دارند.
انواع اتصال كارت صدا به رايانه
- بلند گو (Speaker)
- يك منبع ورودي آنالوگ (ميكروفن ضبط صوت و CD-Player)
- يك منبع ورودي ديجيتال نظير CD-ROM
- يك منبع آنالوگ خروجي نظير ضبط صوت
- يك منبع ديجيتال خروجي
شنيدن صوت
مراحل شنيدن صوت بر خلاف روش توليد صدا مي باشد كه در زير شرح داده شده است:
۱- داده هاي ديجيتال از هاردديسك خوانده مي شود و سپس در اختيار پردازنده اصلي قرار مي گيرد.
۲- پردازنده اصلي داده ها را براي DSP موجود بر روي كارت صدا ارسال مي كند.
3- DSP داده هاي ديجيتال را از حالت فشرده خارج مي كند.
۴- داده هاي ديجيتال غير فشرده شدن توسط DSP بلافاصله با مبدل ديجيتال به آنالوگ (DAC) پردازش و يك سيگنال آنالوگ ايجاد مي كنند. اين سيگنال هاي ايجاد شده از طريق هدفن يا بلند گو شنيده خواهد شد.

اگه خوشتون اومد نظر بدید

دوشنبه 19/6/1386 - 1:23
مورد توجه ترین های هفته اخیر
فعالترین ها در ماه گذشته
(0)فعالان 24 ساعت گذشته